

Latest jet results from Tevatron

Andrea Messina

INFN Roma

On behalf of CDF& DO collaborations

XLI Rencontres de Moriond QCD and High Energy hadronic Interactions La Thuile - Italy, 18-24 March 2006

Jet Physics at 2TeV

Outline

Jet algorithms Low P_T QCD

This is only a selection of latest jet results from Tevatron!!!

 Correlation of particle inside a jet & Fragmentation

High P_T QCD

- Inclusive jet cross section:
 - ✓ Midpoint cone and K_T central jets
 - √ kT forward jets
 - o NLO comparison
- Heavy flavour jets:
 - μ-tagged jet cross section
 - ✓ b-tagged jets:
 - o Inclusive cross section
 - o Dijet correlation

The experimental environment

√p-pbar collisions

 \sqrt{s} =1.96 TeV (RunI 1.8)

√36 bunches, 396 ns

√peak Lum≥10³² [cm⁻²s⁻¹]

 $\sqrt{\approx}$ 25 pb⁻¹/week

Infn Rome-CDF

Both detectors performing well

analyses with 0.3-1.0 fb⁻¹

Jet algorithms

Jets are collimated sprays of hadrons originating from the hard scattering

Appropriate jet search algorithms are necessary to define/study hard physics and compare with theory

Different algorithms correspond to different observables and give different results!

K_{T}

Cluster particle/towers

Based on their relative p_T

MidPoint(come)

Cluster particle/towers

Based on their proximity
in the y- ϕ plane

Jet corrections

- ✓ Calorimeter jets: complex detector behavior
 - must correct for detector resolution and efficiency
 - must correct for pile-up interactions (up to ≈6 extra interactions)

- √ Hadron jets: model dependent correction
 - underlying event subtraction
 - remove fragmentation/hadronization effects
 - Monte Carlo model based
 - Need to be tuned on data!!!
 by using many different observables

- ✓ Parton jets: model dependent correction
 - Gluon radiation, energy loss
 - Monte Carlo model based

To compare with theory is important to have a good (phenomenological) simulation of soft physics: Underlying event, hadronization, fragmentation

Two particle momentum correlation & hadronization

All particle pairs in cone 0.5 around the jet axis $\xi=Ln(E_{jet}/P_{particle}), \Delta \xi=\xi-\xi^{At Max}$ $Q=E_{jet} \times \theta_{Cone}$; $Q_{eff}=$ parton shower cutoff in the theory

Infn Rome-CDF

Inclusive Jet Cross Section-CDF (MidPoint algorithm R=0.7)

Central jets: 0.1<|yjet|< 0.7

- ✓ Data dominated by Jet Energy Scale (JES) uncertainties (3%)
- √ NLO uncertainty due to high x gluon PDF

Andrea Messina Infn Rome-CDF XLI Rencontres De Moriond - QCD and high energy hadronic interactions - La Thuile March 2006

Parton to Hadron Level Corrections

CDF Run II Preliminary

Inclusive Jet Cross Section-DO

(MidPoint algorithm R=0.7)

2 regions in rapidity explored ly^{jet} < 0.4</p>

0.4 < |yjet| < 0.8

 $L = 380 \text{ pb}^{-1}$

Jet energy scale uncertainty

→ dominant error

Good agreement with NLO prediction

Andrea Messina Infn Rome-CDF

Inclusive Jet Cross Section-CDF

 $L = 1 \text{ fb}^{-1}$ (K_T algorithm D=0.7)

Central jets: 0.1

K_T works well in hadronic collisions

Good agreement with NLO CTEQ6.1M

Inclusive Jet Cross Section

Central jets

- Probes physics at small distances ≈10⁻¹⁹m
- Sensitive to PDF (gluon @ high-x)
- At high p_T dominated by jet energy systematic

Forward jets measurements: distinguish between new physics and PDF if any excess in the central region. different jet $E_T \rightarrow$ different syst

Forward Jet Cross Section-CDF (K_T algorithm D=0.7)

$$L = 1 \text{ fb}^{-1}$$

Five regions in jet rapidity explored (D=0.7):

- •|yjet|<0.1
- •0.1<|yjet|<0.7
- •0.7<|yjet|<1.1
- •1.1<|y^{jet}|<1.6
- •1.6<|yjet|<2.1

Good agreement with the NLO pQCD for jets up to |Y|<2.1

µ-Tagged jets

- ullet jet containing heavy flavour often contain μ
 - \Rightarrow search for μ enhances heavy flavour content

µ-Tagged jets cross section

 $L = 300 \text{ pb}^{-1}$

- MidPoint algorithm cone R=0.5
- |y^{jet}| < 0.5
- require μ in R=0.5, P_T^{μ} >5GeV/c

Data/Pyhtia ≈ 1.3 (flat)

🔋 Inclusive bjet cross section 🔀

Reconstruct (silicon detector) secondary vertex from B

hadron decays (b-tagging)

CDF RunII Preliminary

- Beauty production -> Test of pQCD
- MidPoint jets: R = 0.7, $|y|^{jet} < 0.7$
- Shape of secondary vertex mass used to extract b-fraction from data

$$L = 300 \text{ pb}^{-1}$$

- More than 6 decades covered
- Data dominated by Jet Energy Scale and b-fraction uncertainties
- Uncertainties on NLO dominated by μ_D/μ_E scales

Andrea Messina Infn Rome-CDF

Summary

- √ Tevatron delivered More than 1.6 fb⁻¹
 - ▶ Both CDF and DO are performing well
- ✓ Rich QCD physcs program at Tevatron
 - ♦ Good progress in understanding soft p_T phyisics: underlying event, hadronization and particle correlation
 - ♦ Theory (CTEQ61M) agrees with MidPoint and K_T jet cross section over 8 order of magnitude
 - ▶ K_T jet algorithm works fine in hadronic collisions
 - ♦ b-jet production measurements are self consistent

Backup Slides

🔋 Inclusive jet Cross Section 🔀

Inclusive Jet

right: kT (D=0.7)

left: MidPoint (R=0.7)

Both central jets only:

Data

0.1<|Y|<0.7

✓ Comparison to NLO:

both agree with NLO similar patterns in Data/Theory

- ✓ UE+Had Corrections
 - are phenomenological models, not a theory!
 - important for P_T<100
 - k_T algorithm is twice more sensitive

XLI Rencontres De Moriond - QCD and high energy hadronic interactions - La Thuile March 2006

Andrea Messina Infn Rome-CDF

Inclusive jet K_T

NEW L = 1 fb^{-1}

Good agreement with Theory @ NLO!!!

K_T algorithm works in hadron-hadron collisions!!!

Andrea Messina Infn Rome-CDF

Underlying event and Hadronization

To compare with theory is important to have a good (phenomenological) simulation of soft physics: Underlying event, hadronization, fragmentation

Jet shape inclusive jet production (CDF): Phys. Rev. D 71, 112002 (2005)

Pythia Tune A
CDF

Shower Monte Carlo can be tuned to reproduce data behavior

Andrea Messina Infn Rome-CDF

Inclusive jet (D0)

- □ MidPoint algorithm R = 0.7
- $\ \square$ 2 regions in rapidity explored

|y^{jet}|< 0.4 0.4 <|y^{jet}|< 0.8

 $L = 380 \text{ pb}^{-1}$

Jet energy scale uncertainty

→ dominant error

Good agreement with NLO prediction

Andrea Messina Infn Rome-CDF

Gluon PDF at high-x

from Run

E.g. Forward jets measurements help to distinguish between new physics and PDF if any excess in the central region

Big uncertainty for high-x gluon PDF

High P_T b-jet

Displaced tracks inside jet used to reconstruct secondary vertex from B hadron decays (b-tagging)

Extract fraction of b-tagged jets from data:

→ use shape of secondary vertex mass

W+jets results

Differential xsec wrt jet E_T in each of the 4 W+ n jet inclusive samples

Integrated xsec wrt jet E_T in each of the 4 W+ n jet inclusive samples

Caveat: this is not a full theory to data comparison. MC have been normalized to data inclusive cross section in each jet multiplicity sample!

W+jets results

Differential xsec wrt di-jet invariant mass in the W+ 2 jet inclusive samples

Differential xsec wrt di-jet ΔR in the W+ 2 jet inclusive samples

Caveat: this is not a full theory to data comparison. MC have been normalized to data inclusive cross section in each jet multiplicity sample!

bb jet correlation

CDF Run II Preliminary

- \checkmark Cone based jets: R = 0.7, $|\eta|^{\text{jet}} < 1.2$
- \checkmark E_T^{1s†}>30GeV, E_T^{2s†}>20GeV
- √ Reconstruct secondary vertex from B hadron decays (b-tagging)
- √ Shape of secondary vertex mass used to extract b-fraction from data

$$\sigma_{bb} = 34.5 \pm 1.8 \pm 10.5 \text{ nb}$$

PYTHIA Tune A CTEQ5L	38.7 ± 0.6 nb
HERWIG CTEQ5L	$21.5 \pm 0.7 \text{ nb}$
MC@NLO	$28.5 \pm 0.6 \text{ nb}$
MC@NLO + JIMMY	$35.7 \pm 2.0 \text{ nb}$

Relevant contribution from multiple parton interactions!!!

Andrea Messina Infn Rome-CDF